Математические задачки. Морковкин, скучаем :-)

Тема в разделе "Университет", создана пользователем Grigoriy, 10 дек 2006.

  1. Bulldozer Влад

    • Участник
    • Старожил
    Рег.:
    27.12.2012
    Сообщения:
    1.076
    Симпатии:
    757
    Репутация:
    77
    Оффлайн
    При 6 пиратах убили 2-го ("от младших к старшим")? Но это не совпадает с ответом Looser'а и моим.
  2. MS Михаил Семионенков

    • Команда форума
    Рег.:
    11.02.2006
    Сообщения:
    6.542
    Симпатии:
    3.361
    Репутация:
    175
    Оффлайн

    Я задумывал такое прочтение своей записи: при н=1,2.3.4 все выживают, при 5 старший гибнет, при шести опять все радуются жизни.
    А нумерацию естественнее вести от младших: так она сохраняется для произвольных н.

    Продолжая картинку

    ЖЖЖЖТЖТТТЖ, т.е. 7, 8, 9 - не жильцы, если нет 10-ого.
    —- добавлено: 13 июн 2014, опубликовано: 13 июн 2014 —-

    Строго на глаз. Для любого числа пиратов больше 4 существует i. такое что N(i) < n <= N(i+1). В этом интервале примерно половина пиратов, и примерно половина из них погибнет.
  3. OrderMage Учаcтник

    • Участник
    Рег.:
    10.03.2014
    Сообщения:
    179
    Симпатии:
    59
    Репутация:
    0
    Адрес:
    Омск
    Оффлайн
    Для решения подобной задачки проще программку написать )
  4. Looser Учаcтник

    • Участник
    Рег.:
    12.04.2013
    Сообщения:
    175
    Симпатии:
    43
    Репутация:
    2
    Оффлайн
    На глаз как раз меньше выходит. Если число пиратов попало в середину интервала между безопасными значениями, то вероятность первого выжить 0,5 и среднее число погибших около одного. Так что не ясно, как может одна четверть набежать.
  5. MS Михаил Семионенков

    • Команда форума
    Рег.:
    11.02.2006
    Сообщения:
    6.542
    Симпатии:
    3.361
    Репутация:
    175
    Оффлайн

    Не понял. Если н попало в середину интервала, то нижнюю половину интервала, начиная со старшего, салаги выкосят. При н уходящем в бесконечность смертность строго четверть, так что здесь аналитическое решение вернее программного.
  6. Looser Учаcтник

    • Участник
    Рег.:
    12.04.2013
    Сообщения:
    175
    Симпатии:
    43
    Репутация:
    2
    Оффлайн
    В середине интервала достаточно поддержки половины безразличных. Что происходит с вероятностью >1/2. Значит смертность порядка 1. С ростом n смертность ни к чему не стремится, она периодически падает до нуля.
  7. MS Михаил Семионенков

    • Команда форума
    Рег.:
    11.02.2006
    Сообщения:
    6.542
    Симпатии:
    3.361
    Репутация:
    175
    Оффлайн
    Возможно, я не учёл того, "прикрытые смертники" становятся равнодушными. Можно при желании прикинуть смертность, исходя из случайного выбора равнодушных. Нет, есть задача интереснее: начиная с какого н всё будет заканчиваться в первом туре, если равнодушные голосуют за. Хотя ерунда: равнодушных при больших н нет: все или голусуют ради спасения своей жизни, или ради шанса получить приз в следующем туре. Так что я возвращаюсь к своему прежнему мнению.
  8. Looser Учаcтник

    • Участник
    Рег.:
    12.04.2013
    Сообщения:
    175
    Симпатии:
    43
    Репутация:
    2
    Оффлайн
    А какую модель пиратов вы используете? Если считать, что пират в неопределенной ситуации действует случайным образом, то равнодушные есть всегда. Если все равнодушные за, то все сразу заканчивается при любом n. Я это ранее подробно расписал.
  9. MS Михаил Семионенков

    • Команда форума
    Рег.:
    11.02.2006
    Сообщения:
    6.542
    Симпатии:
    3.361
    Репутация:
    175
    Оффлайн
    Модель простая - безопасность и жадность, по условиям. Равнодушный бывает только один и в одном случае: n=N(i)+1
    В этом случае второй по старшинству может убивать или нет - он спасётся и ничего не получит. В остальных случаях все, кто в безопасности и не получил приз, заинтересованы, чтобы игра продолжалась: все ждут момента, когда N(i) - ый будет спасаться и игра закончится, то этого момента жалеть никого нет смысла.
  10. Looser Учаcтник

    • Участник
    Рег.:
    12.04.2013
    Сообщения:
    175
    Симпатии:
    43
    Репутация:
    2
    Оффлайн
    Это не верно. На самом деле, если у нас k+(2^i)+(2^i+2) пирата, 0<k<2^(i+1), i>1,то первые k рискуют жизнью, следующие 2^i равнодушные (жизнью не рискуют, но клад им предлагать не выгодно). Кому-то из остальных пиратов предлагают клад.
    При (2^i)+(2^i+2) пиратах первые (2^i) голосуют за из страха, и еще один голос за, от получившего клад. Остальным все равно. На прошлой странице я все это уже подробно расписывал. Корректность этой конструкции легко доказывается по индукции.
  11. MS Михаил Семионенков

    • Команда форума
    Рег.:
    11.02.2006
    Сообщения:
    6.542
    Симпатии:
    3.361
    Репутация:
    175
    Оффлайн
    Вы правы, я после своего предыдущего поста тоже сообразил, что заложился на кровожадную модель. В Ваши ранние выкладки, каюсь, не вчитался. Похоже, если предположить модель пацифистскую, всегда все выживают, надо посмотреть аккуратно.
  12. Looser Учаcтник

    • Участник
    Рег.:
    12.04.2013
    Сообщения:
    175
    Симпатии:
    43
    Репутация:
    2
    Оффлайн
    Про совсем пацифистскую модель (если все равно — голосуй за) я тоже писал. Тут клад всегда забирает первый, что легко доказывается по индукции. Можно еще рассматривать авантюристические модели: пират готов пойти на известный риск ради клада. Кроме того, ранее мы предполагали, что алгоритм действий пирата известен другим пиратам (а так же все знают, что все это знают, и т. д.). Можно от этого предположения отказаться и получить еще более сложную модель.
  13. MS Михаил Семионенков

    • Команда форума
    Рег.:
    11.02.2006
    Сообщения:
    6.542
    Симпатии:
    3.361
    Репутация:
    175
    Оффлайн
    Пардон, при 5 пиратах старший не может оставить себе вклад - трое младших ухлопают, так что базы для индукции не вижу.
  14. Looser Учаcтник

    • Участник
    Рег.:
    12.04.2013
    Сообщения:
    175
    Симпатии:
    43
    Репутация:
    2
    Оффлайн
    База индукции при двух пиратах. При n пиратах первый за, второй против. Остальным, по индукционному предположению, клад не получить поэтому они за (пацифизм).
  15. MS Михаил Семионенков

    • Команда форума
    Рег.:
    11.02.2006
    Сообщения:
    6.542
    Симпатии:
    3.361
    Репутация:
    175
    Оффлайн
    Возможно, прокол в том, что настроение - величина переменная. С ростом числа пиратов равнодушные превращаются в заинтересованных.
  16. MS Михаил Семионенков

    • Команда форума
    Рег.:
    11.02.2006
    Сообщения:
    6.542
    Симпатии:
    3.361
    Репутация:
    175
    Оффлайн
    с просторов тырнета

  17. Комсюк народный модератор

    • Заслуженный
    • Ветеран
    • Заблокирован
    • Старожил
    Рег.:
    17.07.2011
    Сообщения:
    19.230
    Симпатии:
    23.509
    Репутация:
    1.263
    Нарушения:
    31
    Оффлайн
    играли два против одного?
    или возможен вариант, что только разминались?
  18. MS Михаил Семионенков

    • Команда форума
    Рег.:
    11.02.2006
    Сообщения:
    6.542
    Симпатии:
    3.361
    Репутация:
    175
    Оффлайн

    Вы не следователем по разбитым окнам, случаем, работаете? Если признать фразу враньём, то задача допускает однозначное решение.
    Но со своим северным простодушием я до этого хода не догадался.
  19. Комсюк народный модератор

    • Заслуженный
    • Ветеран
    • Заблокирован
    • Старожил
    Рег.:
    17.07.2011
    Сообщения:
    19.230
    Симпатии:
    23.509
    Репутация:
    1.263
    Нарушения:
    31
    Оффлайн
    ищу лёгкие пути :oops:
    провёл допрос последнего и вуаля
  20. Zayats Без определенного статуса

    • Ветеран
    • Старожил
    Рег.:
    09.01.2007
    Сообщения:
    2.450
    Симпатии:
    1.654
    Репутация:
    156
    Оффлайн
    Лари и Фери играли в одной команде (заступаются друг за друга); кто-то из них, очевидно, и разбил окно. Скорее всего Лаци, на которого прямо указали соперники, но, возможно, виноват Фери. Во втором случае Шаньи (Шакьи из показания 2 я идентифицирую как Шаньи) предложил поиграть в футбол, но сам же и припозднился; а Лаци, похоже, не пользуется особым авторитетом у товарищей.
  21. MS Михаил Семионенков

    • Команда форума
    Рег.:
    11.02.2006
    Сообщения:
    6.542
    Симпатии:
    3.361
    Репутация:
    175
    Оффлайн

    Да, это ключ. По замыслу авторов, вероятно, это взаимоисключающие утверждения. Лаци сдали соперники - такая интерпретация выглядит правдоподобной.
  22. инфолиократ Николай Корнейчук

    • Участник
    Рег.:
    25.12.2007
    Сообщения:
    413
    Симпатии:
    0
    Репутация:
    0
    Адрес:
    Брест, Беларусь
    Оффлайн
    +64
    Только, хотя задачка и про пиратов, но не жизненная: вождь всегда сеье может выьрать ЗИТЦ-ПРЕДСЕДАТЕЛЯ, которого "назначит главным"и которого убьют ...
  23. DMalish Старожил

    • Участник
    • Старожил
    Рег.:
    12.09.2010
    Сообщения:
    1.487
    Симпатии:
    206
    Репутация:
    11
    Адрес:
    Севастополь
    Оффлайн
    Еще одна из серии про турнир. Устроили 6 наших форумчан турнир в 1 круг.Дикий Муцио сыграл все партии вничью. Перворазрядник Вася не проиграл ни одной партии! Локомотив выиграл у победителя турнира и сыграл вничью с Инфолиократом. Априлия обогнал Инфолиократа, но отстал от гроссмейстера Сергея Шипова. Сколько очков набрал занявший 6 место? Назовите его.
  24. -borodino- Учаcтник

    • Участник
    Рег.:
    30.09.2014
    Сообщения:
    124
    Симпатии:
    200
    Репутация:
    23
    Оффлайн
    Ответ на задачу #1388




    [​IMG]

    6 место занял Инфолиократ с двумя очками.
  25. MS Михаил Семионенков

    • Команда форума
    Рег.:
    11.02.2006
    Сообщения:
    6.542
    Симпатии:
    3.361
    Репутация:
    175
    Оффлайн
    Якобы тест в первый класс в Китае: номера мест на парковке (подаётся как рисунок с парковкой, где на месте ХХ стоит машина)

    16 06 68 88 XX 98

    Каков номер парковочного места, занятого машиной?
  26. Комсюк народный модератор

    • Заслуженный
    • Ветеран
    • Заблокирован
    • Старожил
    Рег.:
    17.07.2011
    Сообщения:
    19.230
    Симпатии:
    23.509
    Репутация:
    1.263
    Нарушения:
    31
    Оффлайн
  27. MS Михаил Семионенков

    • Команда форума
    Рег.:
    11.02.2006
    Сообщения:
    6.542
    Симпатии:
    3.361
    Репутация:
    175
    Оффлайн

    Годен в первый класс китайской школы :)
  28. Crest Админ, МГ

    • Команда форума
    Рег.:
    05.02.2006
    Сообщения:
    57.245
    Симпатии:
    21.133
    Репутация:
    627
    Адрес:
    Москва, Россия
    Оффлайн
    Прошу расшифровать сию китайскую грамоту!
    Магия и её разоблачение... :)
  29. MS Михаил Семионенков

    • Команда форума
    Рег.:
    11.02.2006
    Сообщения:
    6.542
    Симпатии:
    3.361
    Репутация:
    175
    Оффлайн

    Подойди к парковке с другой стороны :) (Как говорил Конфуций, даже самый простой предмет я объясняю с двух противоположных концов, а Конфуция учат в детском саду :))
  30. Crest Админ, МГ

    • Команда форума
    Рег.:
    05.02.2006
    Сообщения:
    57.245
    Симпатии:
    21.133
    Репутация:
    627
    Адрес:
    Москва, Россия
    Оффлайн
    Понял!
    Юмористы хреновы... :dash:
  31. MS Михаил Семионенков

    • Команда форума
    Рег.:
    11.02.2006
    Сообщения:
    6.542
    Симпатии:
    3.361
    Репутация:
    175
    Оффлайн

    Ничего, есть шанс отыграться в семье на младшем поколении :)
  32. nh2008 Старожил

    • Участник
    • Старожил
    Рег.:
    01.12.2013
    Сообщения:
    3.961
    Симпатии:
    5.378
    Репутация:
    379
    Адрес:
    Украина
    Оффлайн
    Ко всем рассуждениям о пиратах.
    Такое впечатление, что все они в прошлой жизни были мудрецами. Как-то неправдоподобно получается, чобы "тупые" пираты придумывали изощрённые формулы. Впрочем, этом могут быть очень умные и жадные пираты. :)

    По поводу индукции вспомнилось доказательство, что с 1-го на N-й этаж подняться проще, чем доехать на лифте.
    Лифт может находиться на любом этаже. Дождаться его и потом доехать с 1-го на 2-й сложнее, чем пройти пешком. Аналогично проще подняться пешком со 2-го на 3-й, ..., с N-1-го на N-й.
  33. DMalish Старожил

    • Участник
    • Старожил
    Рег.:
    12.09.2010
    Сообщения:
    1.487
    Симпатии:
    206
    Репутация:
    11
    Адрес:
    Севастополь
    Оффлайн
    А вот еще 2 задачки.
    1.20 шахматистов сыграли турнир-чемпионат города Васюки в один круг. Судья турнира Васюки-2014 гроссмейстер О.Бендер написал в своей заметке, что каждый участник этого турнира выиграл столько же партий, сколько и свёл вничью. Докажите, что комбинатор ошибся.
    2.В шахматном турнире-очном первенстве сайта Крестбук было 12 участников (каждый сыграл с каждым по одному разу). По итогам турнира оказалось, что есть
    9 участников, каждый из которых набрал не более четырех очков. Известно что опытный перворазрядник Вася Лебедев набрал ровно 9 очков.
    Как Вася сыграл с каждым из двух остальных шахматистов-диким Муцио и Локомотивом?
    (Победа – 1 очко, ничья – 0,5 очка, поражение – 0 очков.)
  34. Scaramuccia Старожил

    • Участник
    • Старожил
    Рег.:
    13.01.2012
    Сообщения:
    3.173
    Симпатии:
    2.085
    Репутация:
    61
    Оффлайн

    1. 19 не делится на три, так что не получается равенства выиграных и проиграных партий.
    Каждый сыграл x побед, х ничьих и 19 - 2x поражений. побед и поражений должно быть по ровну.
    2. Проиграл каждому
    9 между собой сыграли все в ничью и проиграли Васе, Муцио и Локомотиву. Иначе у кого-то из них больше 4х. Вася набрал 9 очков выиграв у них у всех. Значит проиграл в оставшихся партиях.
  35. DMalish Старожил

    • Участник
    • Старожил
    Рег.:
    12.09.2010
    Сообщения:
    1.487
    Симпатии:
    206
    Репутация:
    11
    Адрес:
    Севастополь
    Оффлайн
    Или еще такое про великого комбинатора.Остап Бендер, рассказывая о шахматном сеансе в Васюках, рассказал, что во время шахматной партии с Одноглазым у него возникла позиция, в которой на каждой из 30 диагоналей оказалось нечётное число фигур. Прав ли он был?

Поделиться этой страницей